Type: \(\displaystyle A^{1}_2\) (Dynkin type computed to be: \(\displaystyle A^{1}_2\))
Simple basis: 2 vectors: (1, 2, 2, 2, 1, 1), (0, -1, 0, 0, 0, 0)
Simple basis epsilon form:
Simple basis epsilon form with respect to k:
Number of outer autos with trivial action on orthogonal complement and extending to autos of ambient algebra: 0
Number of outer autos with trivial action on orthogonal complement: 0.
C(k_{ss})_{ss}: A^{1}_3
simple basis centralizer: 3 vectors: (0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 1), (0, 0, 0, 1, 0, 0)
Number of k-submodules of g: 31
Module decomposition, fundamental coords over k: \(\displaystyle V_{\omega_{1}+\omega_{2}}+7V_{\omega_{2}}+7V_{\omega_{1}}+16V_{0}\)
g/k k-submodules
idsizeb\cap k-lowest weightb\cap k-highest weightModule basisWeights epsilon coords
Module 11(0, 0, 0, -1, -1, -1)(0, 0, 0, -1, -1, -1)g_{-16}-\varepsilon_{4}-\varepsilon_{5}
Module 21(0, 0, 0, -1, 0, -1)(0, 0, 0, -1, 0, -1)g_{-11}-\varepsilon_{4}-\varepsilon_{6}
Module 31(0, 0, 0, -1, -1, 0)(0, 0, 0, -1, -1, 0)g_{-10}-\varepsilon_{4}+\varepsilon_{6}
Module 41(0, 0, 0, 0, 0, -1)(0, 0, 0, 0, 0, -1)g_{-6}-\varepsilon_{5}-\varepsilon_{6}
Module 51(0, 0, 0, 0, -1, 0)(0, 0, 0, 0, -1, 0)g_{-5}-\varepsilon_{5}+\varepsilon_{6}
Module 61(0, 0, 0, -1, 0, 0)(0, 0, 0, -1, 0, 0)g_{-4}-\varepsilon_{4}+\varepsilon_{5}
Module 73(0, -1, -2, -2, -1, -1)(1, 0, 0, 0, 0, 0)g_{1}
g_{7}
g_{-28}
\varepsilon_{1}-\varepsilon_{2}
\varepsilon_{1}-\varepsilon_{3}
-\varepsilon_{2}-\varepsilon_{3}
Module 83(-1, -1, -1, -2, -1, -1)(0, 0, 1, 0, 0, 0)g_{3}
g_{8}
g_{-27}
\varepsilon_{3}-\varepsilon_{4}
\varepsilon_{2}-\varepsilon_{4}
-\varepsilon_{1}-\varepsilon_{4}
Module 91(0, 0, 0, 1, 0, 0)(0, 0, 0, 1, 0, 0)g_{4}\varepsilon_{4}-\varepsilon_{5}
Module 101(0, 0, 0, 0, 1, 0)(0, 0, 0, 0, 1, 0)g_{5}\varepsilon_{5}-\varepsilon_{6}
Module 111(0, 0, 0, 0, 0, 1)(0, 0, 0, 0, 0, 1)g_{6}\varepsilon_{5}+\varepsilon_{6}
Module 123(-1, -1, -1, -1, -1, -1)(0, 0, 1, 1, 0, 0)g_{9}
g_{13}
g_{-25}
\varepsilon_{3}-\varepsilon_{5}
\varepsilon_{2}-\varepsilon_{5}
-\varepsilon_{1}-\varepsilon_{5}
Module 131(0, 0, 0, 1, 1, 0)(0, 0, 0, 1, 1, 0)g_{10}\varepsilon_{4}-\varepsilon_{6}
Module 141(0, 0, 0, 1, 0, 1)(0, 0, 0, 1, 0, 1)g_{11}\varepsilon_{4}+\varepsilon_{6}
Module 153(0, 0, -1, -2, -1, -1)(1, 1, 1, 0, 0, 0)g_{12}
g_{-26}
g_{-24}
\varepsilon_{1}-\varepsilon_{4}
-\varepsilon_{2}-\varepsilon_{4}
-\varepsilon_{3}-\varepsilon_{4}
Module 163(-1, -1, -1, -1, 0, -1)(0, 0, 1, 1, 1, 0)g_{14}
g_{18}
g_{-22}
\varepsilon_{3}-\varepsilon_{6}
\varepsilon_{2}-\varepsilon_{6}
-\varepsilon_{1}-\varepsilon_{6}
Module 173(-1, -1, -1, -1, -1, 0)(0, 0, 1, 1, 0, 1)g_{15}
g_{19}
g_{-21}
\varepsilon_{3}+\varepsilon_{6}
\varepsilon_{2}+\varepsilon_{6}
-\varepsilon_{1}+\varepsilon_{6}
Module 181(0, 0, 0, 1, 1, 1)(0, 0, 0, 1, 1, 1)g_{16}\varepsilon_{4}+\varepsilon_{5}
Module 193(0, 0, -1, -1, -1, -1)(1, 1, 1, 1, 0, 0)g_{17}
g_{-23}
g_{-20}
\varepsilon_{1}-\varepsilon_{5}
-\varepsilon_{2}-\varepsilon_{5}
-\varepsilon_{3}-\varepsilon_{5}
Module 203(-1, -1, -1, -1, 0, 0)(0, 0, 1, 1, 1, 1)g_{20}
g_{23}
g_{-17}
\varepsilon_{3}+\varepsilon_{5}
\varepsilon_{2}+\varepsilon_{5}
-\varepsilon_{1}+\varepsilon_{5}
Module 213(0, 0, -1, -1, 0, -1)(1, 1, 1, 1, 1, 0)g_{21}
g_{-19}
g_{-15}
\varepsilon_{1}-\varepsilon_{6}
-\varepsilon_{2}-\varepsilon_{6}
-\varepsilon_{3}-\varepsilon_{6}
Module 223(0, 0, -1, -1, -1, 0)(1, 1, 1, 1, 0, 1)g_{22}
g_{-18}
g_{-14}
\varepsilon_{1}+\varepsilon_{6}
-\varepsilon_{2}+\varepsilon_{6}
-\varepsilon_{3}+\varepsilon_{6}
Module 233(-1, -1, -1, 0, 0, 0)(0, 0, 1, 2, 1, 1)g_{24}
g_{26}
g_{-12}
\varepsilon_{3}+\varepsilon_{4}
\varepsilon_{2}+\varepsilon_{4}
-\varepsilon_{1}+\varepsilon_{4}
Module 243(0, 0, -1, -1, 0, 0)(1, 1, 1, 1, 1, 1)g_{25}
g_{-13}
g_{-9}
\varepsilon_{1}+\varepsilon_{5}
-\varepsilon_{2}+\varepsilon_{5}
-\varepsilon_{3}+\varepsilon_{5}
Module 253(0, 0, -1, 0, 0, 0)(1, 1, 1, 2, 1, 1)g_{27}
g_{-8}
g_{-3}
\varepsilon_{1}+\varepsilon_{4}
-\varepsilon_{2}+\varepsilon_{4}
-\varepsilon_{3}+\varepsilon_{4}
Module 263(-1, 0, 0, 0, 0, 0)(0, 1, 2, 2, 1, 1)g_{28}
g_{-7}
g_{-1}
\varepsilon_{2}+\varepsilon_{3}
-\varepsilon_{1}+\varepsilon_{3}
-\varepsilon_{1}+\varepsilon_{2}
Module 278(-1, -1, -2, -2, -1, -1)(1, 1, 2, 2, 1, 1)g_{29}
g_{-2}
g_{30}
-h_{2}
h_{6}+h_{5}+2h_{4}+2h_{3}+2h_{2}+h_{1}
g_{-30}
g_{2}
g_{-29}
\varepsilon_{1}+\varepsilon_{3}
-\varepsilon_{2}+\varepsilon_{3}
\varepsilon_{1}+\varepsilon_{2}
0
0
-\varepsilon_{1}-\varepsilon_{2}
\varepsilon_{2}-\varepsilon_{3}
-\varepsilon_{1}-\varepsilon_{3}
Module 281(0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0)h_{3}-h_{1}0
Module 291(0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0)h_{4}0
Module 301(0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0)h_{5}0
Module 311(0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0)h_{6}0

Information about the subalgebra generation algorithm.
Heirs rejected due to having symmetric Cartan type outside of list dictated by parabolic heirs: 8
Heirs rejected due to not being maximally dominant: 16
Heirs rejected due to not being maximal with respect to small Dynkin diagram automorphism that extends to ambient automorphism: 16
Heirs rejected due to having ambient Lie algebra decomposition iso to an already found subalgebra: 0
Parabolically induced by A^{1}_1
Potential Dynkin type extensions: A^{1}_3, A^{1}_2+A^{1}_1,